To view the poster program please click here

Back to overview


Multiscale homogenization scheme for transport phenomena in cement-based composites under self-healing conditions

Thursday (27.09.2018)
10:30 - 10:45 S1/01 - A02
Part of:

Accurate evaluations and predictions of the responsive behavior of cohesive-frictional materials such as cementitious mortars, soils, rocks or concretes, require a multi-physical and/or multi-scale approach. Various scale-levels are required to account for the different mechanisms that control the complex coupled behaviour at different levels of detail. The overall characteristics of these materials strongly depend on processes that are occurring at different length scales, i.e. mostly reflecting the macro, meso and micro-scale levels. Among the different multi-scale schemes, most commonly used once are those that are based on a homogenization procedures, to account for their versatility. In this research, a consistent homogenized multiscale approach is proposed for modeling transport phenomena under self-healing conditions. This mechanism is approached through a most basic healing process in which a delayed hydration of the micro-scale particle fractions is accounted for through RVEs, which may be initiated by transport mechanisms and/or crack initiations. Cracks may trigger the self-healing mechanism by exposing re-hydrating surfaces to precursors, moisture or other activators inside the composite, hence, a delayed hydration of anhydrous particle fractions inside the composite may take place, while closing the crack.

Dipl.-Ing. Felipe Lopez Rivarola
University of Buenos Aires - UBA
Additional Authors:
  • Prof. Dr. Guillermo Etse
    Universidad Nacional de Tucumán
  • Prof. Dr. Paula Folino
    Universidad de Buenos Aires
  • Prof. Dr. Eduardus Koenders
    Technische Universität Darmstadt
  • Dr. Antonio Caggiano
    Technische Universität Darmstadt
  • Dr. Diego Said Schicchi
    Technische Universität Darmstadt