To view the poster program please click here


C04: In-Situ Techniques and Advanced Microscopy for High Resolution and Multi Scale Characterization of Materials

Belongs to:
TopicC: Characterization

There has been a rapid development of imaging techniques, of both electron microscopy and X-ray techniques, which equip today’s materials scientists with highly advanced tools to probe materials in a multi-modal, multiscale correlated approach. Electron microscopy enables probing microstructures in 2D at even higher resolutions down to the size of atoms along with the combination of different modalities such as EBSD and EDS.  X-ray techniques using both synchrotron and lab x-ray sources enable imaging materials non-destructively and permit the observation of time-dependent (4D) or in-situ behavior of materials subjected external loads or changing physical conditions at 3D resolutions down to the sub-micron to a few tens of nanometers. Recent developments in X-ray techniques have also demonstrated comparative ability to non-destructively conduct grain mapping using diffraction contrast tomography. Researchers now have the ability to use and combine many of these techniques to help understand the origins of, e.g., mechanical properties and understand how the properties are linked to different scales of the microstructure. 
This symposium will cover a broad range of topics related to in situ studies of materials science using electron microscopy, X-ray microscopy and synchrotron X-ray techniques. In particular, multimodal characterizations for in situ studies of materials including the development and application of in situ techniques in the study of materials  in operando. The goal of this symposium is to bring together researchers in the materials science community to share the successes and the potentials for in situ multimodal observations using the above mentioned techniques and further aim to correlate with modeling and simulations across materials science disciplines.

Thursday (27.09.2018)

Friday (28.09.2018)