To view the poster program please click here

Back to overview


Mechanically- and chemically-active nanostructured antibacterial surfaces fabricated by glancing angle sputter deposition

Wednesday (26.09.2018)
16:30 - 16:45 S1/01 - A01
Part of:

Serious clinical infections can be caused by bacteria adhering to surfaces of medical devices and implants. To reduce implant associated infections, implant materials with antibacterial properties as well as good tissue compatibility are an urgent need. Their development is guided by strategies that inhibit initial bacterial colonization and reduce biofilm formation, e.g. by surface functionalization, either by selective surface structuring or by coatings showing chemical functionality. This study follows both approaches. The surface structuring is bioinspired from the nanocolumnar structures on cicada wings which show antibacterial properties. This study is a biomimetic approach to implement these nanocolumnar structures to clinically used implant surfaces. The structures were successfully fabricated by glancing angle deposition (GLAD) magnetron sputtering and are effective against gram-negative bacteria (E. coli). Microstructure and fluorescence microscopy show, that a mechanical effect similar to that on the cicada wing created the antibacterial property [1]. In addition to the mechanical effect this study includes a chemical antibacterial activity via the release of Ag+ ions. Silver shows the ability to kill gram-negative as well as gram-positive bacteria (chemical effect). To control the release of Ag+ from antibacterial surfaces, a sacrificial anode concept was realized [2, 3]. Finally, the mechanically active nanocolumns will be combined with the antibacterial ion release to create novel antibacterial surfaces.

[1] C. Sengstock, M. Lopian, Y. Motemani, A. Borgmann, C. Khare, P. J. Buenconsejo, T. A. Schildhauer, A. Ludwig, and M. Köller, “Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition,” Nanotechnology, vol. 25, no. 19, 2014.

[2] M. Köller, C. Sengstock, Y. Motemani, C. Khare, P. J. S. Buenconsejo, J. Geukes, T. A. Schildhauer, and A. Ludwig, “Antibacterial activity of microstructured Ag/Au sacrificial anode thin films,” Mater. Sci. Eng. C, vol. 46, pp. 276–280, 2015.

[3] A. El Arrassi, P. Bellova, S. M. Javid, Y. Motemani, C. Khare, C. Sengstock, M. Köller, A. Ludwig and K. Tschulik, “A Unified Interdisciplinary Approach to Design Antibacterial Coatings for Fast Silver Release“, ChemElectroChem, 4,1–10, 2017.

Nadine Ziegler
Ruhr-Universität Bochum
Additional Authors:
  • Prof. Dr. Christina Sengstock
    University Hospital Bergmannsheil
  • Viola Mai
    Mathys Ltd Bettlach
  • Prof. Dr. Kristina Tschulik
    Ruhr-University Bochum
  • Prof. Dr. Manfred Köller
    University Hospital Bergmannsheil
  • Prof. Dr. Alfred Ludwig
    Ruhr-University Bochum